Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(3): e0171323, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38319097

RESUMEN

This study reports on the influence of a powder diet in a mouse model of oropharyngeal candidiasis (OPC), a significant health concern caused primarily by Candida albicans. Despite identical nutritional composition, we found that a powdered diet significantly increased Candida burdens and oral lesions, and aggravated weight loss compared to a standard pelleted diet. High fungal burdens and severe oral lesions were accomplished within 48 hours after infection with only one dose of cortisone. Moreover, mice on a powder diet recovered a week after infection. Using a powder diet, we thus modified the cortisone OPC murine model in a way that simplifies the infection process, enhances reproducibility, and facilitates studies investigating both pathogenesis and recovery processes. Our findings also underscore the pivotal role of the physical form of the diet in the progression and severity of oral Candida infection in this model. Future research should investigate this relationship further to broaden our understanding of the underlying mechanisms, potentially leading to novel prevention strategies and improved disease management.IMPORTANCEOropharyngeal candidiasis (OPC) is a multifactorial disease and a significant health concern. We found that the physical form of the diet plays a critical role in the severity and progression of OPC. We developed a modified cortisone OPC murine model that facilitates studies investigating pathogenesis and recovery processes.


Asunto(s)
Candidiasis Bucal , Cortisona , Animales , Ratones , Polvos , Modelos Animales de Enfermedad , Cortisona/uso terapéutico , Reproducibilidad de los Resultados , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Bucal/microbiología , Candidiasis Bucal/patología , Candida albicans , Dieta
2.
Microbiol Spectr ; : e0173423, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37671879

RESUMEN

Oral bacteria can influence the ability of Candida albicans to cause oropharyngeal candidiasis (OPC). We recently reported that a Lactobacillus johnsonii-enriched oral microbiota reduced C. albicans virulence in an immunosuppressed OPC mouse model. As a follow-up, in this work, we aimed to enrich the resident oral Lactobacillus communities with a prebiotic diet to further assess their effect on the severity of OPC. We tested the effect of a prebiotic xylo-oligosaccharides (XOS)-enriched diet in the oral global bacterial composition and severity of OPC. We assessed changes in the oral microbiome composition via 16S-rRNA gene high-throughput sequencing, validated by qPCR. The impact of the prebiotic diet on Candida infection was assessed by quantifying changes in oral fungal and bacterial biomass and scoring tongue lesions. Contrary to expectations, oral Lactobacillus communities were not enriched by the XOS-supplemented diet. Yet, XOS modulated the oral microbiome composition, increasing Bifidobacterium abundance and reducing enterococci and staphylococci. In the OPC model, the XOS diet attenuated Candida virulence and bacterial dysbiosis, increasing lactobacilli and reducing enterococci on the oral mucosa. We conclude that XOS attenuates Candida virulence by promoting a bacterial microbiome structure more resilient to Candida infection. IMPORTANCE This is the first study on the effects of a prebiotic diet on the oral mucosal bacterial microbiome and an oropharyngeal candidiasis (OPC) mouse model. We found that xylo-oligosaccharides change the oral bacterial community composition and attenuate OPC. Our results contribute to the understanding of the impact of the oral bacterial communities on Candida virulence.

3.
Microbiol Resour Announc ; 12(5): e0008923, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37042767

RESUMEN

Lactobacillus johnsonii strain MT4, isolated from the oral cavity of C57BL/6 mice, elicits antimicrobial activity against disease-associated microorganisms. Short-read sequencing of the whole genome revealed a single genome of 1,883,026 bp, with a GC content of 34.4%, and no plasmids.

4.
Front Microbiol ; 13: 853762, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35330775

RESUMEN

Lactobacillus johnsonii is a probiotic bacterial species with broad antimicrobial properties; however, its antimicrobial activities against the pathobiont Candida albicans are underexplored. The aim of this study was to study the interactions of L. johnsonii with C. albicans and explore mechanisms of bacterial anti-fungal activities based on bacterial genomic characterization coupled with experimental data. We isolated an L. johnsonii strain (MT4) from the oral cavity of mice and characterized its effect on C. albicans growth in the planktonic and biofilm states. We also identified key genetic and phenotypic traits that may be associated with a growth inhibitory activity exhibited against C. albicans. We found that L. johnsonii MT4 displays pH-dependent and pH-independent antagonistic interactions against C. albicans, resulting in inhibition of C. albicans planktonic growth and biofilm formation. This antagonism is influenced by nutrient availability and the production of soluble metabolites with anticandidal activity.

5.
Front Oral Health ; 2: 689382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35048033

RESUMEN

Lactobacilli are among the most studied bacteria in the microbiome of the orodigestive and genitourinary tracts. As probiotics, lactobacilli may provide various benefits to the host. These benefits include regulating the composition of the resident microbiota, preventing - or even potentially reverting- a dysbiotic state. Candida albicans is an opportunistic pathogen that can influence and be influenced by other members of the mucosal microbiota and, under immune-compromising conditions, can cause disease. Lactobacillus and Candida species can colonize the same mucosal sites; however, certain Lactobacillus species display antifungal activities that can contribute to low Candida burdens and prevent fungal infection. Lactobacilli can produce metabolites with direct anticandidal function or enhance the host defense mechanisms against fungi. Most of the Lactobacillus spp. anticandidal mechanisms of action remain underexplored. This work aims to comprehensively review and provide an update on the current knowledge regarding these anticandidal mechanisms.

6.
ACS Omega ; 5(44): 28441-28451, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33195894

RESUMEN

Silver nanoparticles (AgNPs) as antimicrobial agents have been extensively studied. It is generally assumed that their inhibitory activity heavily depends on their physicochemical features. Yet, other parameters may affect the AgNP traits and activity, such as culture medium composition, pH, and temperature, among others. In this work, we evaluated the effect of the culture medium physicochemical traits on both the stability and antibacterial activity of AgNPs. We found that culture media impact the physicochemical traits of AgNPs, such as hydrodynamic size, surface charge, aggregation, and the availability of ionic silver release rate. As a consequence, culture media play a major role in AgNP stability and antimicrobial potency. The AgNP minimal inhibitory concentration (MIC) values changed up to 2 orders of magnitude by the influence of culture media alone when single-stock AgNPs were tested on the same strain of Escherichia coli. Furthermore, a meta-analysis of the AgNP MIC values confirms that the "chemical complexity" of culture media influences the AgNP activity. Studies that address only the antimicrobial activities of nanoparticles on common bacterial models should be performed by standardized susceptibility assays, thus generating replicable, comparable reports regarding the antimicrobial potency of nanomaterials.

7.
BMC Biomed Eng ; 2: 11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33073175

RESUMEN

BACKGROUND: Bismuth compounds are known for their activity against multiple microorganisms; yet, the antibiotic properties of bismuth nanoparticles (BiNPs) remain poorly explored. The objective of this work is to further the research of BiNPs for nanomedicine-related applications. Stable Polyvinylpyrrolidone (PVP)-coated BiNPs were produced by a chemical reduction process, in less than 30 min. RESULTS: We produced stable, small, spheroid PVP-coated BiNPs with a crystalline organization. The PVP-BiNPs showed potent antibacterial activity against the pathogenic bacterium Staphylococcus aureus and antifungal activity against the opportunistic pathogenic yeast Candida albicans, both under planktonic and biofilm growing conditions. CONCLUSIONS: Our results indicate that BiNPs represent promising antimicrobial nanomaterials, and this facile synthetic method may allow for further investigation of their activity against a variety of pathogenic microorganisms.

8.
Antibiotics (Basel) ; 9(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751405

RESUMEN

Candida auris is an emergent multidrug-resistant pathogenic yeast, which forms biofilms resistant to antifungals, sanitizing procedures, and harsh environmental conditions. Antimicrobial nanomaterials represent an alternative to reduce the spread of pathogens-including yeasts-regardless of their drug-resistant profile. Here we have assessed the antimicrobial activity of easy-to-synthesize bismuth nanoparticles (BiNPs) against the emergent multidrug-resistant yeast Candida auris, under both planktonic and biofilm growing conditions. Additionally, we have examined the effect of these BiNPs on cell morphology and biofilm structure. Under planktonic conditions, BiNPs MIC values ranged from 1 to 4 µg mL-1 against multiple C. auris strains tested, including representatives of all different clades. Regarding the inhibition of biofilm formation, the calculated BiNPs IC50 values ranged from 5.1 to 113.1 µg mL-1. Scanning electron microscopy (SEM) observations indicated that BiNPs disrupted the C. auris cell morphology and the structure of the biofilms. In conclusion, BiNPs displayed strong antifungal activity against all strains of C. auris under planktonic conditions, but moderate activity against biofilm growth. BiNPs may potentially contribute to reducing the spread of C. auris strains at healthcare facilities, as sanitizers and future potential treatments. More research on the antimicrobial activity of BiNPs is warranted.

9.
Chemosphere ; 261: 127775, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32738717

RESUMEN

The short-term effects of Mn2O3 nanoparticles (NPs) were examined for nitrifying bacterial enrichments exposed under low and high dissolved oxygen (DO) conditions using substrate (ammonia) specific oxygen uptake rates (sOUR), reverse transcriptase - quantitative polymerase chain reaction (RT-qPCR) assays, and by analysis of 16S rRNA sequences. Samples from nitrifying bioreactor were exposed in batch vessels to Mn2O3 NPs (1, 5 and 10 mg/L) for either 1 or 3 h under no additional aeration or 0.25 L/min aeration. There was increase in nitrification inhibition as determined by sOUR with increasing dosages of Mn2O3 NPs for both low and high DO. At 10 mg/L Mn2O3 NPs, the inhibition was about 7-10% for 1 and 3 h exposure in both cases. There was notable reduction in the transcript levels of amoA, hao and nirK for 10 mg/L of Mn2O3 NPs under 3 h, high DO exposure, which corresponded well with sOUR. The 16S rRNA sequencing showed that there was an inhibitory effect on ammonia oxidizers activity upon exposure to 10 mg/L of Mn2O3 NPs. Collectively, the findings in this study advanced understanding of the different effects of Mn2O3 NPs on nitrifying bacteria.


Asunto(s)
Nanopartículas/toxicidad , Nitrificación/fisiología , Amoníaco/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Expresión Génica , Nitrificación/efectos de los fármacos , Oxidación-Reducción , Oxígeno/metabolismo , ARN Ribosómico 16S/genética
10.
Front Microbiol ; 11: 1673, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849347

RESUMEN

Candida auris is an emergent multidrug-resistant pathogenic yeast with an unprecedented ability for a fungal organism to easily spread between patients in clinical settings, leading to major outbreaks in healthcare facilities. The formation of biofilms by C. auris contributes to infection and its environmental persistence. Most antifungals and sanitizing procedures are not effective against C. auris, but antimicrobial nanomaterials could represent a viable alternative to combat the infections caused by this emerging pathogen. We have previously described an easy and inexpensive method to synthesize silver nanoparticles (AgNPs) in non-specialized laboratories. Here, we have assessed the antimicrobial activity of the resulting AgNPs on C. auris planktonic and biofilm growth phases. AgNPs displayed a strong antimicrobial activity against all the stages of all C. auris strains tested, representative of four different clades. Under planktonic conditions, minimal inhibitory concentration (MIC) values of AgNPs against the different strains were <0.5 µg ml-1; whereas calculated IC50 values for inhibition of biofilms formation were <2 µg ml-1 for all, but one of the C. auris strains tested. AgNPs were also active against preformed biofilms formed by all different C. auris strains, with IC50 values ranging from 1.2 to 6.2 µg ml-1. Overall, our results indicate potent activity of AgNPs against strains of C. auris, both under planktonic and biofilm growing conditions, and indicate that AgNPs may contribute to the control of infections caused by this emerging nosocomial threat.

11.
MethodsX ; 7: 100894, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32405464

RESUMEN

Bismuth is a water-insoluble non-toxic metallic element used in a wide array of pharmaceutical products, cosmetics, and catalysts, among others. Yet, the research regarding the use of bismuth nanoparticles (BiNPs) for antimicrobial treatments is scarce. Most of the current protocols for synthesizing BiNPs suitable for medical uses cannot be easily replicated in non-specialized laboratories. The objective of this work is to provide a fast, facile and economical method for synthesizing BiNPs. Bismuth nanoparticles were synthesized by a chemical reduction process, in less than 1 h, in a heated alkaline glycine solution; by the chelation and reduction of the bismuth (III) ions using dimercaptopropanol (BAL) and sodium borohydride respectively, and then coated and stabilized by polyvinylpyrrolidone (PVP). The resulting PVP-BiNPs were characterized by UV-Vis spectrophotometry and transmission electron microscopy (TEM). • We describe a simple, rapid and inexpensive method for the synthesis of bismuth nanoparticles. • This method allows synthesizing small nanoparticles with an aspect ratio close to one. • Bismuth nanoparticles have antimicrobial properties, this easy-to-replicate protocol may further the research on bismuth nanoparticles for biomedical applications.

12.
BMC Res Notes ; 12(1): 773, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775864

RESUMEN

OBJECTIVE: Silver nanoparticles (AgNPs) can be difficult or expensive to obtain or synthesize for laboratories in resource-limited facilities. The purpose of this work was to optimize a synthesis method for a fast, facile, and cost-effective synthesis of AgNPs with antimicrobial activity, which can be readily implemented in non-specialized facilities and laboratories. RESULTS: The optimized method uses a rather simple and rapid chemical reduction process that involves the addition of a polyvinylpyrrolidone solution to a warmed silver nitrate solution under constant vigorous stirring, immediately followed by the addition of sodium borohydride. The total synthesis time is less than 15 min. The obtained AgNPs exhibit an aspect ratio close to 1, with an average size of 6.18 ± 5 nm. AgNPs displayed potent antimicrobial activity, with Minimal Inhibitory Concentration values of ≤ 4 µg mL-1 for Staphylococcus aureus and ≤ 2 µg mL-1 for Candida albicans. The resulting method is robust and highly reproducible, as demonstrated by the characterization of AgNPs from different rounds of syntheses and their antimicrobial activity.


Asunto(s)
Antibacterianos/síntesis química , Antifúngicos/síntesis química , Nanopartículas del Metal/química , Plata/química , Antibacterianos/farmacología , Antifúngicos/farmacología , Borohidruros/química , Candida albicans/efectos de los fármacos , Técnicas de Química Sintética , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Povidona/química , Nitrato de Plata/química , Staphylococcus aureus/efectos de los fármacos
13.
Toxicol Lett ; 276: 11-20, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28483428

RESUMEN

Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike.


Asunto(s)
Nanopartículas del Metal/toxicidad , Plata/toxicidad , Animales , Bacterias/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Hongos/efectos de los fármacos , Células HeLa , Humanos , Microalgas/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Nanotecnología , Povidona/toxicidad , Medición de Riesgo , Virus/efectos de los fármacos
14.
PLoS One ; 9(10): e108876, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25290909

RESUMEN

Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm.


Asunto(s)
Candida albicans/efectos de los fármacos , Candida albicans/ultraestructura , Nanopartículas del Metal/administración & dosificación , Compuestos de Plata/administración & dosificación , Plata , Antifúngicos/química , Antifúngicos/farmacología , Humanos , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...